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ABSTRACT
The development of reliable anthropogenic emission inventories is essential for both understanding the
sources of air pollution and designing effective air-pollution-control measures in China. However, it is
challenging to quantify emissions in China accurately, given the variety of contributing sources, the
complexity of the technology mix and the lack of reliable measurements. Over the last two decades,
tremendous efforts have been made to improve the accuracy of emission inventories, and significant
improvements have been realized. More reliable statistics and survey-based data have been used to reduce
the uncertainties in activity rates and technology distributions. Local emission factors and source profiles
covering various sources have been measured and reported. Based on these local databases, improved
emission inventory models have been developed for power plants, large industrial plants and the residential,
transportation and agricultural sectors. In this paper, we review the progress that has been made in
developing inventories of anthropogenic emissions in China. We first highlight the major updates that have
been made to emission inventory models and the underlying data by source category. We then summarize
the sector-based estimates of emissions of different species contained in current inventories.The progress
that has been made in the development of model-ready emissions is also presented. Finally, we suggest
future directions for further improving the accuracy of emission inventories in China.
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INTRODUCTION AND BACKGROUND
Understanding emissions in China is essential
for studies of atmospheric chemistry and climate.
Specifically, anthropogenic emissions from China
cause severe haze events, which lead to adverse
health impacts and reductions in visibility.Quantify-
ing these emissions accurately is challenging, due to
the variety of contributing sources, the complexity
of the technology mix and the lack of reliable local
measurements within China. Developing a reliable
emission inventory with high accuracy is of great
importance for designing air-pollution-control
measures.

One of the main goals of developing emission
inventories is to provide gridded emissions for use
as inputs in atmospheric and climate models. Emis-
sion inventories have been developed in supporting

of scientific research projects in whichmodelling ac-
tivities are always accompanied by top-down valida-
tions. Examples include theTransport andChemical
Evolution over the Pacific (TRACE-P) [1], Inter-
continental Chemical Transport Experiment-Phase
B (INTEX-B) [2], MIX for MICS-Asia (Model
Inter-Comparison Study for Asia) [3], Hemispheric
Transport of Air Pollution (HTAP) [4] and Evalu-
ating the Climate and Air Quality Impacts of Short-
Lived Pollutants (ECLIPSE) emission inventories
[5]. Emissions have also been estimated to sup-
port policy-making by stakeholders. Examples in-
clude theGreenhouse gas-Air pollution Interactions
and Synergies (GAINS) inventorymodel and inven-
tories used in policy evaluations [6–8].

Within the last two decades, tremendous ef-
forts have been made to develop reliable emission
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inventories in China, and significant improvements
have been made. Early emission inventories over
China were conducted mainly using ‘bottom-up’
methodologies, which employ activity rates and
emission factors (EFs); the values of these param-
eters were drawn from those determined for West-
ern countries, due to the lack of local data [1,9–12].
To support the INTEX-B (Intercontinental Chemi-
cal Transport Experiment-Phase B) mission, Zhang
et al. [2] used an improved, detailed technology-
based approach to estimate emissions in China. Us-
ing a consistent inventory framework, Ohara et al.
[12] developed the first emission inventory cov-
ering China (the Regional Emission inventory in
Asia, REAS) that includes both the historical pe-
riod and projections; this inventory was updated to
REAS v2 by Kurokawa et al. [13]. Increasing num-
bers of emission inventories have been compiled by
parameterizing up-to-date technology distributions,
datasets containing local measurements and im-
proved methodologies for specific source categories
(e.g. [14–20]) or specified regions (e.g. [21–24]).

Reliable data are crucial in improving the accu-
racyof emissionestimates.ThegovernmentofChina
releases an annual statistical yearbook on energy
consumption and product yields covering diverse
source categories, and these data constitute the ba-
sic database of activity rates used in compiling in-
ventories. Large emission gaps are found when dif-
ferent official statistics are used [25,26]. Quantify-
ing and further reducing the uncertainties due to
statistical data are presently focuses of study. Given
the increasing numbers of detailed surveys and data-
collection activities that are being conducted by the
Ministry of Environmental Protection (MEP) of
China, industrial associations and research groups,
emission estimates at the level of individual units or
production lines are becoming feasible.

Large numbers of real-world EFs have beenmea-
sured in China. Chinese researchers have produced
large quantities of local measurements for station-
ary, mobile and fugitive sources over the past two
decades.These data significantly improve our under-
standing of emission characteristics in China. Sur-
veys of technological evolution and the controlmea-
sures that have been implemented are important
in determining net EFs. Although these surveys are
being conducted in increasing numbers, they are
limited to specific sources, such as power plants,
large industrial plants and vehicles.The evolution of
technology-based EFs calculated in inventory mod-
els provides a basis for analyses of historical trends
and projections of future emissions.

Tsinghua University has developed a uniform
emission model framework, the Multi-resolution
Emission Inventory for China (MEIC), to estimate

anthropogenic emissions over China. The MEIC
model is based on a series of improved emission in-
ventory models including unit-based emission in-
ventories for power plants [19] and cement plants
[15]; a high-resolution county-level vehicle emis-
sion inventory [16]; a residential combustion emis-
sion inventory based on national-wide survey data
[27]; and an explicit profile-based non-methane
volatile organic compound (NMVOC) speciation
framework [28]. MEIC provides the community a
publically accessible emission dataset over China
with regular updates (http://www.meicmodel.org).

Nine chemical species, including both gaseous
and aerosol species, are included in this review, as
they are always included as inputs to chemical trans-
port models: SO2 (sulphur dioxide), NOx (nitrogen
oxides), CO (carbon monoxide), NMVOCs, NH3
(ammonia), PM10 (particulatematterwith diameter
less thanor equal to 10μm),PM2.5 (particulatemat-
ter with diameter less than or equal to 2.5 μm), BC
(black carbon) andOC (organic carbon). To fill the
gap between the inventoried and modelled species,
explicit speciation of theNMVOCs and PM (partic-
ulate matter) is required.

In this article, we review the considerable
progress that has been made in the methods and
data used in the estimation of emissions and the re-
sults of these estimates (second and third sections)
and model-ready emissions processing (fourth
section) in China. Main uncertainties in current in-
ventories are discussed in the fifth section. Outlook
for developing improved emission inventories over
China are provided in the sixth section.

EMISSIONS BY SECTORS
In this section, we provide an overview of the devel-
opment of emission inventories by sector and sub-
sector that focuses on (i) the history of emission
estimates, the challenges, and up-to-date methods
used in estimating emissions; (ii) key data sources
of activity rates, locally measured EFs and other sig-
nificantly improved parameters; and (iii) emission
estimates and trends for specific sectors. Sectoral
emissions by pollutant for 2010 are summarized in
Table 1 (derived from version 1.2 of MEIC).

Power plants
Power plants are major contributors to the total
emissions of air pollutants in China, and they have
been widely considered to be a separate sector in
many emission inventories. As the largest consumer
of coal in China, the power plant sector has reported
its total fuel consumption in each province in the
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Table 1. Emission estimates by sectors in China, 2010 (derived from MEIC v1.2, www.meicmodel.org) (unit: Gg/year for the
sectoral emissions, Tg/year for the total emissions).

Species Power Industry Residential Transportation Solvent use Agriculture Total

SO2 7779.06 16 372.99 4153.77 222.98 28.53
NOx 9265.93 9344.26 1726.82 6982.79 27.32
CO 3632.28 74 739.76 71 281.77 20 323.67 169.98
NMVOCs 66.39 7878.63 5014.79 2351.98 7151.05 22.46
NH3 0.00 273.57 427.65 25.42 9701.62 10.43
PM10 978.19 6060.13 8068.53 497.78 15.60
PM2.5 847.27 5805.25 4452.15 493.31 11.60
BC 1.75 584.35 848.19 273.13 1.71
OC 0.02 578.64 2481.50 99.61 3.16

official statistical yearbooks for over two decades
(China Energy Statistical Yearbook, National Bu-
reau of Statistics (NBS), 1992–2016). Early stud-
ies employed the reported annual fuel consumption
values and fixed EFs to calculate the yearly emis-
sions; however, this procedure does not accurately
represent the rapid changes in emission rates driven
by technological improvements [9,12,29,30]. Re-
cent studies have adopteddynamicEFsderived from
technology-based methodologies and locally mea-
sured EFs to improve the accuracy of both the mag-
nitudes of power plant emissions and the trends in
these emissions [1,2,31–35].

In addition to accurate estimates of total emis-
sions, the spatial allocation of emissions is also
important in power plant inventories for model ap-
plications and analyses. Ideally, emissions are es-
timated for individual power plants and allocated
to grid cells using their exact geographical coordi-
nates. However, due to the lack of detailed informa-
tion (i.e. location, fuel consumption and emissions)
on the power plants in China, many bottom-up in-
ventories rely on a downscaling approach to esti-
mate the spatial distribution of emissions. This ap-
proach ignores the differences in technology used at
power plants; thus, different inventories indicate dif-
ferent unit-based emission rates. The early invento-
ries only included information on large electricity-
generating units and treat the remaining small units
as area sources [1,12]. The emissions from large
units were derived by downscaling provincial to-
tal emissions based on unit size [2,36]. Subsequent
studies used a global power plant database, CAR-
bon Monitoring for Action (CARMA) [37], which
provides more extensive information (including the
magnitudes of CO2 emissions and locations) for
individual power plants including small units, and
breaks down the total emissions to the level of in-
dividual power plants [13,38,39].The calculation of
power plant emissions based on their unit-level coal
consumption, instead of the downscaling approach,

was initially performed by Zhao et al. [40] for 2000
and 2005 and allocated to the corresponding geo-
graphic coordinates. Similar unit-based power plant
emission inventorieswere subsequently constructed
for other years, including the period of 2005–07 (in-
cluding only NOx; [41]), the year 2010 (including
only NOx; [42]) and the year 2011 [43]. More re-
cently, a unit-based power plant database that covers
theperiodof 1990–2010, theChina coal-firedPower
plant Emissions Database (CPED), was developed;
this database includes time-dependent information
on the technologies, fuel consumption, EFs and lo-
cations of individual units [19]. This inventory was
the first long-term, unit-based inventory to be con-
structed, and it permits improved estimates of the
spatial distribution of emissions and their trends.

EFs change over time with the operation of new
combustion or emission control technologies re-
quired by new emission standards and the changes
in fuel property. The sulphur content of coal varies
widely among power plants, and the national aver-
age value from 1990 to 2010 is 1.07–0.95% [19].
The sulphur retention ratios range from 0.10 [40]
to 0.15 [2,19,44]. Flue-gas desulphurization (FGD)
systemshave been gradually installed to removeSO2
emissions since 2005; the penetration of this tech-
nology has increased from 12% in 2005 to 86%
in 2010. Because the operating conditions of in-
stalled FGD facilities improved after 2008 [45–47],
the SO2 removal efficiency improved accordingly,
and a coal consumption weighted mean of 78% was
reached for all FGDfacilities in2010 [19]. SO2 emis-
sions can also be removed from wet scrubbers as
a co-benefit of PM removal and the corresponding
suggested removal efficiency is 20% [48,49].

Table 2 summarizes the measured NOx EFs for
coal-fired power plants in China. The NOx EFs are
determined by boiler size, combustion technology
and coal type. Low-NOx burners (LNBs) were the
only technology that was widely used to control
NOx emissionsbefore2010.Mostpowerplantswere
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Table 2. Summary of NOx emission factors for different types of coal-fired power plants.

Unit size Combustion technology Bituminous coal, g/kga Anthracite coal, g/kga

Large (≥300MW) Advanced LNBb 2.881, 3.052, 3.283, 3.554, 4.135,
4.176, 4.647

6.147, 6.584, 6.998

Traditional LNB 4.409, 4.9810, 5.2311, 5.0612,
5.658, 7.784

4.6111, 4.9912, 7.777, 7.948,
8.0510, 8.739

Medium (≥100MW
and<300MW)

Traditional LNB 4.3410, 5.5211, 6.9713 7.0711, 7.5610

Non-LNB 5.4614, 8.1211 8.2510, 12.1111

Small (<100MW) Non-LNB 6.5515, 6.8811 10.0115, 11.5011

aSample weighted mean. bLNB: Low-NOx burners. Data sources: 1Qian [53]. 2Cao and Liu [54]. 3Zhu [55]. 4Wang et al. [56]. 5Yi et al. [57]. 6Zhu et al.
[58]. 7Xie et al. [59]. 8Wang et al. [60]. 9Bi andChen [61]. 10Tian [62]. 11Zhu [63]. 12Zhu et al. [64]. 13Feng and Yan [65]. 14Zhao et al. [66]. 15Zhao et al.
[14].

Table 3. Summary of the mass fractions of particulate matter of different size fractions to the total particulate matter in fly
ash for different types of boilers.

Boiler type

Size fraction Pulverized boilers Circulating fluidized beds Grate furnaces

PM>10 0.561, 0.612, 0.823, 0.824 0.715 0.724, 0.6385

PM2.5–10 0.281, 0.372, 0.153, 0.134 0.225 0.184, 0.235

PM2.5 0.161, 0.022, 0.033, 0.054 0.075 0.104, 0.145

Data sources: 1Huang et al. [67]. 2Liu et al. [68]. 3Yi et al. [57]. 4Zhao et al. [14]; in-field measurements. 5Klimont et al. [51]; literature review.

required tobeequippedwithLNBs tomeet emission
standards [50]. Selective catalytic reduction (SCR)
and selective non-catalytic reduction (SNCR) sys-
tems were subsequently employed, and their pene-
tration increased from 13% in 2010 to nearly 90% in
2015.

PM emission rates are related to boiler types.
Different types of boilers (pulverized coal boilers,
circulating fluidized beds and grate furnaces) retain
different fractions of ash (20%, 44% and 85%,
respectively), and the corresponding PM size distri-
butions are listed in Table 3 [51,52]. Cyclones, wet
scrubbers, electrostatic precipitators and bag filters
are widely used in power plants to remove PM, and
the removal efficiencies of these technologies have
been summarized by Lei et al. [34]. In addition, wet
FGD systems can remove PM as a co-benefit of SO2
removal.

Driven by the ever-increasing demand for
electricity, power plant emissions have increased
sharply since 1990. However, emissions have grown
at significantly lower rates than electricity gener-
ation, given the technological changes that have
occurred in the power sector. Figure 1 compares
multi-year estimates for power plant emissions
derived from bottom-up inventories that are avail-
able for multiple species and are widely used in the
research community. Nearly all of the inventories
reflect consistent trends for SO2 emissions, which
peaked in approximately 2006 owing to the instal-

lation of FGD systems. The SO2 emission trends
after 2005 in the Emission Database for Global
Atmospheric Research (EDGAR) 4.2 differ from
those of the other inventories, most likely due to a
lack of information on the progress that has been
made in controlling SO2 emissions in power plants
in China. In addition, the official estimates of SO2
emissions published by the MEP (China Statistical
Yearbook, NBS, 1997–2011) are generally lower
than those reached by other studies. The NOx
emission trends display good consistency among
all of the inventories. More recent NOx estimates
[19] are lower than the previous values [13,32],
due to the smaller EFs adopted. The PM emission
trends generally agree well with each other, except
for REAS v2, which makes different assumptions
regarding the penetration of PM removal devices.

Industry
Industry is the largest contributor of emissions of
SO2 (57%), NOx (34%), CO (44%), NMVOCs
(35%) and PM2.5 (50%), and contributes over 34%
of the total emissions of PM10 and BC in China (see
Table 1 for 2010).These pollutants are emitted both
from stationary industrial factories and by industrial
processes. Cement plants, iron and steel plants and
industrial boilers are identified as major contribu-
tors of SO2, NOx and PM. In recent years, unit-
based emission inventories have been developed
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Figure 1. Comparisons of SO2, NOx and PM2.5 emissions from China’s coal-fired power plants during 1990 and 2010.

for cement plants [70] and iron and steel plants
[71,72] based on detailed (factory-level) local infor-
mation, which has substantially improved the devel-
opment of emission estimates.Thepetroleum indus-
try is the largest contributor to industrial emissions
of NMVOCs, but these emissions are far from ac-
curately quantified. We illustrate the emission esti-
mates for the above subsectors separately below.

Cement
China is the largest producer and consumer of ce-
ment in the world. In 2014, cement production in
China was as high as 2.49 billion metric tons, and
this amount accounted for∼60% of the world’s pro-
duction [73]. The cement industry has been iden-
tified as one of the major contributors to the total
national emissions of air pollutants in China. Sev-
eral early studies treated the cement industry as a
part of the industrial sector and estimated the cor-
responding emissions based on total coal consump-
tion [1,12]. In addition, other studies applied uni-
form EFs to the reported cement production fig-
ures [74], and this practice did not reflect changes in
technology and equipment replacement over time.
Recent studies have developed dynamic EFs using
technology-based methodologies [13,15,70,75,76]
and local measurements have been incorporated,
thus improving the accuracy of estimated emissions
in China (e.g. [70,75,76]).

With the improvement of total estimated emis-
sion accuracy in the cement industry, the resolution

of spatial distribution also has been improved grad-
ually. Early studies adopted various spatial proxies
to allocate total emissions to grid cells, due to the
lack of detailed information for each cement plant
(e.g. [1,75,77]). Recent studies allocate country and
regional emissions using surrogate data developed
based on the locations and annual capacities of the
plants in each country and region (e.g. [13,15]).
More recently, detailed plant-based information on
large cement plants was collected and used to cal-
culate plant-level emissions for the period of 1980–
2012, and the remaining emissions were all treated
as regional area sources in each province. This pro-
cedure significantly improves the accuracy of the in-
ferred spatial distribution [70].

EFs reflect changes in technology over time. In
general, twomajor types of kilns—shaft kilns and ro-
tary kilns—are used inChina. Due to the large emis-
sions from shaft kilns, the use of precalciner kilns
(themost advanced rotary kilns) has beenpromoted
since the endof the 1990s.Therefore, equipment up-
dates in cement plants in China have caused signifi-
cant changes in the net EF.

The burning of fuel in the cement industry is
usually identified as the sole source of SO2 andNOx
emissions [15]. SO2 is primarily produced by the
oxidation of sulphur in fuels such as coal. In precal-
ciner kilns, approximately 70% of SO2 is absorbed
by reaction with calcium oxide or calcium carbide
[78], while much less is absorbed in other rotary
kilns and in shaft kilns. Recent studies adopt the
assumption that 80% of SO2 is absorbed for
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Table 4. Summary of NOx emission factors for different kiln types in cement industry.

Cement kiln types NOx emission factors (g/kg-clinker)a, b

Precalciner kilns 1.1681, 1.5352, 1.5843,4,c, 1.4945, 1.6936, 1.7463,d, 1.8347, 2.0168, 2.1469

Shaft kilns 0.2023,e, 0.2433,f, 0.48210

Other rotary kilns 1.6091, 2.4488

aSample weightedmean. bAssumptions introducedwhen transferringmeasurements to emission factor unit in g/kg-clinker: flue-gas volume is 2.47m3/kg-
clinker (Wu [79]); average clinker to cement ratio is 0.72 (Lei et al. [15]); average coal consumption is 183g-coal/kg-clinker for precalciner and other
rotary kilns, and 177g-coal/kg-clinker for shaft kilns (Zhang et al. [75]). cFor precalciner kiln capacity ≥4000 t/d. dFor precalciner kiln capacity <4000
t/d. eFor shaft kiln capacity<10 0000 t/yr. fFor shaft kiln capacity≥10 0000 t/yr. Data sources: 1Yuan et al. [80]. 2Ren et al. [81]. 3Handbook of Industrial
Pollution Emission Factors. 4Guo et al. [82]. 5Liu et al. [83]. 6Chen et al. [84]. 7Wu et al. [79]. 8Su et al. [85]. 9Ding et al. [86]. 10Li [87].

Table 5. Summary of the mass fractions of particulate matter of different size fractions to the total particulate matter in fly
ash for different types of kilns.

Kiln types

Size fraction Precalciner kilns Shaft kilns Other rotary kilns

PM>10 0.181 0.141 0.111

PM2.5–10 0.241 0.221 0.201

PM2.5 0.581 0.641 0.691

Data sources: 1Lei et al. [76].

precalciner kilns, whereas this proportion is 30%
for other kiln types. In general, SO2 emissions are
estimated using a mass balance approach and are
based on the average sulphur content of coal in each
province [15,70].

The generation of NOx is highly influenced by
kiln temperature and oxygen availability. Compared
to shaft kilns, rotary kilns produce much more NOx
because of their higher operation temperatures and
stable ventilation [15].Table 4 summarizes themea-
sured NOx EFs in cement plants in China published
in various studies. As awareness of the increasing
NOx emissions from the cement industry in China
has grown, increasing numbers of SCR and SNCR
systems have been requested for installation in the
cement industry [70].De-NOx systems are reported
to have been subsequently installed in precalciner
kilns, and their penetration rate had reached nearly
92% as of 2015 (China’s Ministry Environmental
Protection).

Besides kilns, PM is emitted from several other
emission sources, including quarrying and crushing,
grinding and blending, packaging and loading,
and the storage of raw material [15]. The PM EF
depends on both the characteristics of unabated
emissions from the overall production process and
the removal efficiencies of PM emission control
devices. As shown in Table 5, the three types of kilns
emit PM with different size fraction distributions.
PM control devices can reduce PM emissions
by 10–99.9%, depending on the type of control
technology employed and the size distribution of
PM in the raw flue gas [76]. The removal efficien-
cies of various PM emission control devices are
summarized by Lei et al. [15].

Large increases in cement production in China
since 1980 have resulted in dramatic increases in
emissions of air pollutants. Figure 2 comparesmulti-
year estimates for cement plant emissions from
bottom-up inventories that have been published by
different researchers. The inventories developed by
Lei et al. [15] andHua et al. [70] provided compara-
tively consistent trends for SO2, NOx and PM emis-
sions. These two studies show that SO2 emissions
increased rapidly from 1990 to 2003 and fell sig-
nificantly after 2007. However, the peak SO2 emis-
sions estimated by Lei et al. [15] and Hua et al.
[70] occurred in 2007 and 2003, respectively. A de-
tailed comparison of the methods and data used
in these two studies indicates that the differences
in the trends in SO2 emissions from 2003 to 2007
can be attributed to the derived province-level coal
consumption. NOx emissions show significant in-
creases since 1980; emissions of this pollutant in-
creased much faster than any other pollutant, due
to the rapid expansion of precalciner kilns in China.
These two studies display similar trends in PM emis-
sions from 1990 to 2008. The emissions of PM rose
rapidly from 1990 to 1995, and PM emissions de-
creased gradually, due to the replacement of shaft
kilns by precalciner kilns and the application of high-
performance PM removal technology, especially
after 2004.

Iron and steel
China has been the largest producer and consumer
of iron and steel in the world since 1996, tomeet the
rapidly growing demand of infrastructure construc-
tion. As an energy-intensive and pollution-intensive
sector, it is estimated that the production of iron
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Figure 2. Comparisons of SO2, NOx and TSP emissions from China’s cement industry during 1980 and 2012.

and steel contributed approximately 27% of the dust
emissions, 20% of the SO2 emissions and 8% of the
NOx emissions from all of the keymanufacturing in-
dustries in China in 2013 [71]. The primary emis-
sions characteristics of iron and steel production
have been estimated by recent studies [71,72,91].
Wang et al. [71] proposed a unit-based bottom-up
methodology that employs detailed information on
300 integrated steel plants in China, including steel
production, capacity, geographical location and in-
stallation status of FGD systems. To accurately esti-
mate the PM emissions, Wang et al. [71] developed
an emission inventory model for the iron and steel
industry that provided informationoneachemission
node within the production process, including both
stationary and fugitive sources.Activity rates, includ-
ing the product yields for each process, are accessi-
ble from the official statistics (China Steel Yearbook,
Steel Statistical Yearbook), the reports of the China
Iron and Steel Industry Association and local litera-
ture.

The EFs of iron and steel production processes
used in current emission inventories are mainly
based on the Manual of Emission Coefficients,
whichwas producedusing industry census data from
China and was released by the MEP in 2011. West-
ern data and reports are available in corresponding
publications, specifically the US EPA (Environmen-
tal Protection Agency)’s Compilation of Air Pollu-
tion Emission Factors (AP-42), the European Envi-
ronment Agency (EEA) guidebook, the Best Avail-

able Techniques Reference Document for Iron and
Steel Production released by the European Com-
mission (EU-BAT) and the National Atmospheric
Emissions Inventory for the UK (NAEI). The de-
tailed EFs for different source categories can be
found in the inventory papers [71,72].

End-of-pipe technologies for the control of SO2
and PM with high removal efficiencies have been
increasingly installed in iron and steel plants. By
2012, the proportion of wet FGD systems used in
sintering reached 73.1% [91]. According to Wang
et al. [72], the EFs for PM2.5 decreased by 21.2%
from 2006 to 2012, due to the implementation
of emission control policies. The gas-recycling ra-
tio in iron and steel plants reached values exceed-
ing 96% in 2013 (as estimated by Wang et al.
[71]). The government of China has released emis-
sion standards for the iron and steel industry (GB
28662–2012, GB 28663–2012, GB 28664–2012)
and has provided instructions to adjust the in-
dustrial structure, which has also affected the net
EFs.

Driven by the huge growth in production, the
emissions of SO2, NOx and PM2.5 due to the pro-
duction of iron and steel increased from 1.22 to 2.31
Tg (+89%), 0.33 to 0.69 Tg (+97%) and 0.89 to
1.71 Tg (+92%), respectively, between 2005 and
2011 [71]. The emissions of PM began to decrease
in 2012, due to the increasing control level. Sinter-
ing is the process that produces the largest amounts
of all of these pollutants.
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Table 6. Summary of emission factors for industrial boilersa.

Fuel type SO2 NOx CO PM10 PM2.5 BC OC

Briquette 19.91, 9.952,b 1.632,b 141, 112,b 2.511, 0.243 0.791, 0.2192,b,
0.223

0.01062,b 0.01962,b

Raw
coal/bituminous

5.82, 5.652,
1.352, 2.92,
46.71

1.712, 2.132,
2.382, 2.472

1.432, 2.872,
9.052, 0.672,
151

1.681,
0.13–0.653,
0.0164, 0.14,
0.0454

0.2092, 0.4862,
0.0592, 0.0462,
0.871, 0.08–0.493,
1.143,c

0.0372, 0.0182,
0.00132, 0.00142,
0.0000624,
0.00284, 0.00074

0.0292, 0.0262, 0.0032,
0.0062, 0.00034,
0.01714, 0.00194

aFuels are burned in grate boiler if not specified, unit: g/kg-fuel. bNo control facilities. cCirculating fluidized beds. Data sources: 1Ge et al. [92]. 2Wang et al. [95]. 3Li et al. [94]. 4Zhang
et al. [93].

Industrial boilers
Industrial boilers are important sources of emis-
sions in China for NOx, SO2 and PM. In 2010,
they released approximately 5.2 Tg of NOx (20%
of total emissions), 11.0 Tg of SO2 (40%) and
0.96 Tg of PM2.5 (8%) (estimated by MEIC v1.2).
Of the industrial boilers in China, 85% are coal-
fuelled. Approximately 50%of coal is burned in boil-
ers with small capacities of ≤35 t/h that feature
low combustion efficiencies and inefficient particu-
late emission controlmeasures anddesulphurization
devices. Most industrial boilers in China are grate
boilers, and small coal-fired boilers are especially
prevalent. Cyclone or wet dust collectors are usually
installed for PM abatement.

The EFs of coal combustion in industrial boil-
ers have been reported by several native studies and
are summarized in Table 6 [92–95]. PM compo-
nents, including BC (EC in the original paper) and
OC, have also been measured by Wang et al. [95]
and Zhang et al. [93]. The measured EFs reported
by different studies show very large differences, in-
dicating substantial underlying uncertainties. Other
key parameters that introduce uncertainties in emis-
sion estimates, including activity rates, fuel quality
and technology distributions, are rarely investigated
for industrial boilers in China. The development of
a reliable local-scale database of industrial boilers in
China is quite urgent.

To reduce the emissions, MEP of China released
the emission standards for industrial boilers in 1983,
and updated in 1991, 1999 and 2014 (GB 13271–
2014). In the up-to-date emission standards, emis-
sion limits for SO2 and NOx are included that are
separate from those of PM. However, little infor-
mation on the effects of these environmental stan-
dards at the national level is available. Effective
control measures have produced significant reduc-
tions in the emissions from industrial boilers in the
megacities, such as Beijing and Shanghai. In Beijing,
small scattered boilers have been shut down, highly
efficient units have been constructed and the en-
ergy sources used have shifted from coal to cleaner

fuels since 1998. As a result, reductions in the emis-
sions from industrial boilers of 136 Gg of SO2, 48.7
Gg of NOx, 24 Gg of PM10 and 14.3 Gg of PM2.5
were achieved between 1998 and 2013 [96]. Simi-
lar energy-saving measures have been carried out in
Shanghai [97]. Other pioneering provinces, includ-
ing Shandong, Heibei and Guangdong, have also
released regional emission standards for industrial
boilers, and the effects of implementing these stan-
dards have yet to be investigated and evaluated.

Petroleum industry
Petroleum-related industries are the largest contrib-
utors to industrial NMVOCs. These emissions are
estimated based on the ‘EF method’ and are mainly
produced by the exploitation, storage and transport
of oil and gas, oil refineries, gas stations, the chemi-
cal industry and carbon black production. Qiu et al.
[98] establishedanewclassificationof industrial sec-
tors using a source-tracingmethod, which covers the
emission sources in entire industries by tracing the
material flow of NMVOCs in each industrial pro-
cess. The industrial sources are grouped into four
categories, which are the production of NMVOCs,
the storage and transport of NMVOCs, industrial
processes that use NMVOCs as raw materials and
processes that use NMVOCs-containing products.
This classification system was followed by Wu et al.
[99] to characterize industrial emissions in China.

Local measurements of EFs for processes used in
the petroleum industry are quite limited. Wei et al.
[100] and Bo et al. [101] summarized the EFs of
NMVOCs for the exploitation and distribution of
oil and gas and oil refineries derived from reports
from Western countries, including the US AP-42
database, the EEA guidebook and local emission
standards. The EFs of rubber products were mea-
sured by Wu et al. [102]. A national standard (GB
11085–89) has been released for the storage and dis-
tribution of fossil fuels that provides a reference that
can be used to determine the corresponding EFs.
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Residential
The residential consumption of fossil fuels (i.e. coal,
oil and gas) for energy and biofuels (i.e. wood and
crop residue) for cooking and heating is associated
with large emissions of air pollutants in China, due
to its relatively low combustion efficiency and the
lack of controls. In China, the residential sector is
a major contributor to emissions of anthropogenic
pollutants including PM2.5, BC, OC and NMVOCs
(this sector accounts for 36–82% of the total emis-
sions of these pollutants, according to MEIC),
despite its small proportion of total energy con-
sumption (<10%). The residential sector has been
identified as amajor source of uncertainty in current
inventories of anthropogenic emissions inChina be-
causeof the lackof reliable data and locallymeasured
EFs [1,2,36,103].

Residential emissions in China have been esti-
mated inmany global, regional and national bottom-
upemission inventories compiledusing activity rates
and EFs (e.g. EDGAR, [1,2,12]). These inventories
typically employ activity rates (i.e. energy consump-
tion) obtained from official sources of energy statis-
tics, such as the China Energy Statistical Yearbook
(CESY) or the International Energy Agency (IEA).
Early inventories [1,2] estimated residential emis-
sions by applying uniform EFs for a given fuel to en-
tire sectors, due to the lack of more detailed infor-
mation. However, these inventories ignore the large
variations in EFs that may occur among different
fuel sub-types (e.g. bituminous coal vs. anthracite
coal), fuel combustion types (e.g. raw coal vs. bri-
quette) and combustion devices (e.g. boilers, tra-
ditional stoves vs. improved stoves). In recent in-
ventories, technology-based approaches have been
adopted to better represent the dynamic changes
in residential emissions in China (e.g. MEIC [34]).
Lei et al. [34] considered dynamic changes in the
share of briquettes in residential coal consumption
and estimated that, because of the increased share
of briquettes, the average net EFs for BC and OC
in residential coal stoves decreased by 34% and
10%, respectively, from 1990 to 2005. In the MEIC
inventory, the technology distribution of different
coal combustion devices (i.e. boilers and stoves) in
the urban residential sector was estimated using a
bottom-up demand-side energy model.

Although several residential inventories have
been developed for China, quantifying emissions
from the residential sector remains a challenge be-
cause of the wide variety of fuel-use patterns and
emission characteristics and the lack of relevant
data. The estimated emissions from residential sec-
tor are much more uncertain than those from other
anthropogenic sectors. Energy consumption in the

residential sector is highly uncertain compared to
that in other sectors. Lu et al. [36] assigned uncer-
tainties (95% confidence intervals, CIs) of 33% and
80% to residential coal and biofuel use in China, re-
spectively. Inconsistencies between provincial and
national energy statistics have been reported by pre-
vious studies [25,26]. Zhang et al. [2] argued that
coal briquettes are widely used in the residential sec-
tor; however, only a small proportion (<10%) are
reported in the official energy statistics.

Alternative approaches have been developed to
better understand and represent real-world fuel con-
sumption in the residential sector. A series of sur-
veys to assess residential energy consumption in
China was carried out at the national [104,105]
and regional scales [106–111]. Those survey data
have provided useful information on residential
fuel consumption and choices and have helped
to identify their relationships with natural and
socio-economic factors (e.g. temperature, house-
hold income, energy prices, fuel access, electrifica-
tion and level of education). Several of these surveys
[104,107,108,110,111] revealed large amounts of
residential coal consumption that are missing from
the current statistical system, and the emission in-
ventories for some regions were subsequently re-
vised based on the survey data [111]. Zhu et al.
[112] developed regression models using climate
and socio-economic parameters, including heating
days andheatingdegreedays (HDDs), toproject the
spatial and temporal trends in residential fuel con-
sumption and air pollutant emissions over China.

Many laboratory and field measurements in
China have been performed to assess local residen-
tial EFs. These EFs have been found to vary greatly
depending on the type of fuel and the stove used,
fuel quality and combustion conditions [113–123].
Based on measurements of 28 fuel/stove combi-
nations in China, Zhang et al. [113] generated a
database of EFs from household stoves containing
species such as CO2, CO, CH4, TNMHCs (To-
tal Non-Methane Hydrocarbons), SO2, NOx and
TSPs (Total Suspended Particles) and found that
the EFs associated with solid fuels were substan-
tially greater than those of liquid and gaseous fuels.
Tsai et al. [114] further measured the EFs of spe-
ciated NMHCs (Non-methane Hydrocarbons) for
16 fuel/stove combinations. Chen et al. [115] re-
ported the EFs of particles and their carbonaceous
fractions (i.e. BC and OC) for five coal briquettes
burned on a residential coal stove based on mea-
surements; they also reported the EFs for residen-
tial burning of coal chunks [116]. Li et al. [118] con-
ducted fieldmeasurements to assess the emissions of
carbonaceous aerosols fromhousehold biofuel com-
bustion. Shen et al. [119–123]measured EFs of PM,
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Table 7. Emission factors for residential fuel combustion in China (unit: g/kg).

Raw coal Coal briquette

Species Bituminous Anthracite Bituminous Anthracite Wood Crop residues

SO2 0.15–20.4a 0.08–9.9a,c 0.002–0.03a 0.015–0.21a

NOx 0.15–3.9a 0.07–1.1a,c 0.5–2a,j 0.23–1.7a,j

CO 70.7–288a,k 19.1–68.4a,k 19.7–102.7a,i , j ,m 29.3–215.4a,i , j ,k ,m

NMVOC 0.17–6.5a,b 0.0003–1a,b 0.08–5a,b,j 0.18–26.6a,b, j

PM2.5 0.13–46.6a,e, f ,g ,k 0.62–1.54e,f ,g 0.03–12.9a,c,d,f ,g 0.17–2.2d,g,k 0.7–8.3a,i , l ,n,o 1.7–18a,i ,k

BC 0.006–28.5e,f ,g ,k 0.002–0.035e,f ,g 0.006–0.5d,f ,g,h,k 0.001–0.012d,g,h,k 0.06–2.5i, l ,n,o 0.1–2.6i,k

OC 0.1–17.0e,f ,g ,k 0.03–0.47e,f ,g 0.007–10.1d,f ,g ,h,k 0.017–0.36d,g,h,k 0.11–4.3i, l ,n,o 0.35–3.6i,k

∗Data sources: aZhang et al. [113]. bTsai et al. [114]. cGe et al. [124]. dChen et al. [115]. eChen et al. [116]. fZhang et al. [93]. gZhi et al. [117]. hChen et al.
[125]. iLi et al. [118]. jWang et al. [126]. kShen et al. [119]. lShen et al. [120]. mWei et al. [127]. nShen et al. [121]. oShen et al. [122].

Table 8. Estimates of China’s residential emissions (unit: Gg/year).

Inventories Year SO2 NOx CO NMVOC PM2.5 BC OC

Streets et al. [1] 2000 2523 702 43 867 5604 782 2561
Ohara et al. [12] 2000 2801 974 58 308 938 2497
Zhang et al. [2] 2001 2599 997 48 254 5996 3853 868 2254

2006 2838 1166 55 883 7601 4461 1002 2606
Lu et al. [36] 2000 1947 639 1893

2004 2048 826 2519
2008 2365 888 2670
2010 2931 936 2790

Zhao et al. [6] 2010 2888 2604 63 765 4429 809 2228
MEIC 2000 2329 741 59 820 4733 3750 721 2198

2005 2926 988 74 799 6071 4725 869 2775
2010 3470 1044 70 970 5704 4326 848 2481

OC andEC from the residential combustion of solid
fuels under field and laboratory conditions. Most of
the EFs measured in the field were higher than the
corresponding EFs measured under laboratory con-
ditions. Table 7 summarizes the measured EFs for
residential fuel combustion in China, based on a lit-
erature review. As shown in Table 7, the EFs for
coal briquettes are generally lower than those for raw
coal.TheBCEFs of bituminous raw coal are 50–200
times higher than the other EFs.

A comparison of estimates of residential emis-
sions in China between 2000 and 2010 is shown
in Table 8. Large discrepancies are associated with
the SO2 emissions in 2000 and the NOx emissions
in 2010. Ohara et al. [12] estimated that the year-
2000 residential SO2 emissions in China were 2.8
Tg; this value is 44% higher than that obtained by
Lu et al. [36]. As estimated by Zhao et al. [6], the
year-2010 residential NOx emissions in China were
2.6 Tg; this value is 149% higher than that published
by MEIC. Although large discrepancies are not ob-
served in the emissions of BC and OC in individ-
ual years, different trends are reported by Lu et al.
[36] and MEIC. According to Lu et al. [36], these
quantities increased by ∼47% from 2000 to 2010;

however, the corresponding estimates published by
MEIC reflect increases of only 13–18%.Note that an
uncertainty analysis suggests that the largest uncer-
tainties in the residential sector are associated with
the emissions of BC and OC [103].

Transportation
On-road vehicles
The air pollutants from on-road vehicles are divided
into two subsectors: tailpipe exhaust andevaporative
emissions. These types of emissions are discussed
separately below.

Tailpipe exhaust emissions. China accounts for 14%
of the world’s automobiles. Reducing vehicle emis-
sions during rapid urbanization is a major challenge
in China [128]. The on-road transportation sec-
tor is the largest contributor to PM2.5 pollution in
major Chinese cities, including Shanghai, Beijing,
Guangzhou and Nanjing [129–132], and this pol-
lution has detrimental impacts on human health
[133–135].
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Figure 3. Summary of vehicular emission estimates in China.

Early studies of the emission estimation from on-
road vehicles in China were based on data from
Western countries [9,136]. During the last two
decades, dozens of papers have been published that
present vehicle emission inventories based on lo-
cal statistics and native investigations [16,137–147].
Figure 3 presents a detailed summary of estimates
of vehicular emissions. Although significant differ-
ences are seen among the different inventories, clear
trends in emission reductions that were driven by
progressive vehicle environmental standards are ob-
served.The total emissions ofNMHCs fromvehicles
peaked in approximately 2007, the emissions of CO
and PM peaked in around 2010 and the total emis-
sions of NOx from vehicles peaked in approximately
2013 and have decreased since that time.

Local databases of EFs have been developed
to reflect the real-world emission characteristics of
vehicles in China. The EFs used in early studies
were derived directly from international models,
due to the lack of sufficient local emission test-
ing data and comprehensive localized models. The

international models from which these EFs were
taken include the Mobile Source Emissions Factor
(MOBILE) and Motor Vehicle Emission Simula-
tor (MOVES) models developed by the US EPA,
the International Vehicle Emissions (IVE) model
developed at the University of California at River-
side and the COmputer Programme to calculate
Emissions from Road Transport (COPERT). EFs
from international models developed based on test-
ing results in US or European countries do not
accurately reflect the emission characteristics of
vehicles in China, due to differences in vehicle
configurations, ambient conditions and driving cy-
cles. Emphasis has been placed on the localization
of international models. Hao et al. [148] tested
171 vehicles on chassis dynamometers, and the re-
sults were used to localize the MOBILE model. Fu
et al. [149] and Liu et al. [150] measured the emis-
sion rates of 12 and 75 vehicles, respectively, using
portable emission measurement systems (PEMS);
the testing results were used to localize theMOBILE
and IVE models, respectively. Zhang et al. [151]
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developed an updatedEFmodel for theBeijing vehi-
cle fleet (EMBEV) that was based on large amounts
of testing data produced by a comprehensive vehi-
cle emission testing programme. The failure to rep-
resent real-life driving cycles in the laboratory, which
significantly lowered the accuracy of emission esti-
mates, revealed the presence of ‘lab-to-road’ issues
that arise from erroneous driving cycles or the dis-
ablingof pollution control devices [152].The impor-
tance of real-world emission testing has increased
in recent years. Investigations based on the PEMS
testing programmes led by the Tsinghua University,
Beijing Institute of Technology (BIT) and Vehicle
Emission Control Centre (VECC) teams, as well as
other researchers, have been launched, and the re-
sults of these investigations represent a comprehen-
sive database of real-world EFs [150,151,153–161].

The accuracy of activity rates is another key factor
that affects the quality of vehicular emission inven-
tories. Activity levels are primarily calculated using
the number of vehicles registered and vehicle kilo-
metres travelled (VKT) data. The vehicle registra-
tion data can be obtained from public statistics and
contain relatively low uncertainties. To provide reli-
able activity level data, representative and accurate
VKT data are of great importance. Approximately
80–2000 samples have been investigated in China
[144,162,163]. Liu et al. [164] derived vehicle activ-
ity data from the trajectories of more than 70 000
cars and the annual mileages of 2 million trucks in
China; this study represents an important step to-
wards improved emission estimates.

In addition to the emission estimates, the grid-
ding of emissions significantly affects the accuracy
of emission inventories for the transportation sec-
tor. Most existing studies employ parameters such
as GDP (Gross Domestic Product), road length,
population, city lights and vehicle stocks as spa-
tial proxies to allocate emissions to individual grid
cells [38,137].Zheng et al. [16]developedemissions
using county-level geographical parameters; these
county-level emission estimates were then allocated
to grid cells using the China Digital Road Network
Map (CDRM). Integrating traffic flow data into the
development of high-resolution vehicle emission in-
ventories has been investigated by several studies
[139,147,163,165]. In addition, vehicle registration
data can be employed in estimating emissions from
passenger cars; however, these data cannot be used
for freight trucks that often travel long distances be-
tween cities and provinces. Yang et al. [144] devel-
oped a road emission intensity-based (REIB) ap-
proach to better describe the spatial distribution of
truck emissions in China.

The development of future vehicle emission in-
ventories requires additional real-world emission

testing data collected under different ambient con-
ditions (e.g. high altitude) and driving conditions
(e.g. cold start). TheMEP should utilize the second
national pollution census to launch more testing
programmes to enhance the EF database. Detailed
traffic flow data are needed to improve the accuracy
of vehicle activity rates and the spatial distribution of
emissions.

Evaporative emissions. Emissions of NMVOCs from
vehicles, including tailpipe exhaust and evaporative
emissions, have become amajor and growing source
of NMVOC emissions in China [21,131,170–172].
Vehicular evaporation has joined tailpipe exhaust as
a dominant pathway of vehicular NMVOC emis-
sions, due to the limited controls on evaporation
losses [173,174]. Previous studies used the ratios of
toluene and benzene concentrations (T/B) to eval-
uate the contributions from vehicle sources to am-
bient NMVOCs. The T/B ratios of tailpipe exhaust
are typically 2.0; higher ratios are observed in evapo-
rative emissions in Asia, due to the elevated toluene
concentrations in gasoline. The T/B ratios in most
urbanized areas are high, e.g. 37 inHongKong, 10 in
Manila and Bangkok and 6 in Seoul, indicating con-
tributions from evaporative emissions [175–178].

Evaporative sources include the venting of can-
isters and fuel permeation/leakage. Based on certi-
fied test procedures, evaporative emissions can be
divided into those from refuelling, hot soak, diur-
nal and running loss, listed in order of decreas-
ing amounts emitted. Speciation profiles have been
constructed using headspace vapour [179,180], liq-
uid fuel [180,181], tunnel tests [182] and Sealed
Housing for Evaporative Determination (SHED)
tests [183]. Liu et al. [164] detected 93 species of
NMVOCs and determined their individual shares
in emissions produced by different processes, mech-
anisms and vehicle control technologies. Further-
more, a comprehensive vehicle activity-based speci-
ation profile was developed that includes the 35ma-
jor NMVOC species that account for 90.6∼98.6%
of total detected organics. Studies of such EFs are
highly complex, considering the evaporative nature
of fugitive emissions; the methods used to deter-
mine these EFs include SHED tests and tunnel tests.
The former type of test is more accurate and widely
used. Pang et al. [184] reported evaporative EFs for
49 in-use vehicles from fleets ranging from 1999 to
2003 in the USA. Mellios et al. [185] tested four
vehicles in Europe to validate existing evaporative
emission results. Liu et al. [174] evaluated emission
rates in China using 30 crossover tests performed
on five tested vehicles using non-ethanol gasoline
and 41 crossover tests performed on five vehicles

Downloaded from https://academic.oup.com/nsr/article-abstract/4/6/834/4775139
by guest
on 14 February 2018



846 Natl Sci Rev, 2017, Vol. 4, No. 6 REVIEW

using four concentrations of ethanol-blended gaso-
line (0–10%). Four types of local EFs—diurnal, hot
soak, permeation and refuelling—were provided.
The evaporative emission rates from Euro4 vehicles
(which have diurnal evaporative emission rates of
2–8 g/day) are dozens of times those of vehicles in
the USA (0.3 g/day), reflecting a substantial gap be-
tween these two sets of regulations. An ethanol con-
centration of 10% can lead to increases in evapora-
tive emissions of 20–40%.

Models of evaporative emissions are either based
on the Wade-Reddy equation, which considers
changes in various factors (including gasoline
volatility, ethanol content, canister size, canister
load, canister purging, vehicle, fuel system design,
fuel tank fill level, parking and driving patterns, ab-
solute ambient temperature, temperature variations
and ambient pressure), or are determined directly
from experimental results. The former approach has
been used in several well-known models, such as
MOVES,MOBILE and IVE [186]. Studies that em-
ploy these models include Huang et al. [187] (IVE
model), Dong et al. [188] (Wade-Reddy equation
with consideration of the impact of parking activi-
ties) and Yang et al. [189] (Wade-Reddy equation).
The latter approach has been used in the studies
by Mellios and Samars (simulation of final diurnal
emissions) [185,190], Yamada (24-hour diurnal
and hot soak emissions) [173] and Liu (72 hour
diurnal and hot soak, refuelling and permeation
emissions) [164,174]. In 2015, the evaporative
emissions of volatile organic compounds (VOCs)
in China ranged from 185 Gg in 2010 to 264 Gg.
These emissions correspond to approximately
0.12–0.21 g/km, excluding running losses and
motorcycles [164,189], and are greater than the
Euro3 tailpipe emission rate (0.19 g/km) [174]. Liu
et al. [164] estimated total running losses of 1146
± 768 Gg in China. Evaporative emissions from
vehicles (including motorcycles) are responsible for
39.2% of the total vehicular emissions of NMVOCs
[164]. The largest uncertainty is due to the lack of
direct evidence for the magnitude of running losses
in China. Other major uncertainties in current
evaporative inventories of China are due to the lack
of consideration of driving and canister conditions
before parking, which lead to differences between
actual EFs and those measured in the laboratory.

Off-road engines
Off-road equipment is usually diesel-fuelled in
China. Unlike on-road vehicles, little attention has
been devoted to this subsector. Recent studies
indicate that the emissions of NOx and PM from
off-road engines are comparable or even higher than

those of on-road vehicles [191,192]. Wang et al.
[192] provided an overview of the methodology,
EFs and emission estimates for five major con-
tributing sources: agricultural equipment, industrial
equipment, shipping, locomotives and commercial
airplanes. Shipping emissions are illustrated sep-
arately in the following subsection, followed by a
summary of other off-road sources.

Shipping. Increased connectivity and the interna-
tional marine trade have stimulated inland devel-
opment. In 2015, 41% of the cargo loading and
60% of the unloading of the world marine trade oc-
curred in Asia [193]. China is one of the largest
shipping countries and has more than 18 000 km
of coastline and over 50 ports. These ports are pri-
marily located within five port clusters, namely the
Pearl River Delta (PRD), the Yangtze River Delta
(YRD), the Bohai Rim Area (BRA), the south-east
coast and the south-west coast. Seven of the top 10
container ports in the world are located in China.
Specifically, these ports are those of Shanghai, Shen-
zhen, Ningbo, Hong Kong, Qingdao, Guangzhou
and Tianjin (http://www.worldshipping.org/).

Theestablishmentof port-level and regional ship-
ping emission inventories is an urgent priority. The
fuel-based method [194–198] applies to calcula-
tions that apply to large scales and overlong time
scales, whereas the trade-based method [199] re-
quires less data but produces results with greater un-
certainty. Both of those methods are categorized as
top-down approaches, and their results are generally
of lower accuracy compared to those of bottom-up
ones, which derive their estimates from the charac-
teristics and movements of ships [200]. The vessel-
visa-based method is a bottom-up approach that is
based on ship visa registration data; it was used pre-
dominantly in earlier studies of port-scale or port-
cluster-scale emissions [194–197]. The automatic
identification system (AIS)-based method is the
most advanced; it is basedon themovements of indi-
vidual vessels.The AIS-basedmethod has been used
in recent studies to obtain emission inventories with
high spatial resolutions.

The national-level ship emission inventory has
been continuously developed in the past two years.
Liu et al. [201] obtained the first estimates of emis-
sions from ocean-going vessels (OGVs) in East Asia
using an advanced method based on detailed dy-
namic AIS data; the climate impacts of the associ-
ated radiative forcing and the health impacts and
premature deaths caused by ship emissions were
also assessed. Chen et al. [202] developed a com-
prehensive national-scale ship emission inventory in
China for 2014 based on AIS data, including OGVs,
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Table 9. Shipping emissions in China (unit: Gg/year).

Air pollutants

Region Port SOx PM10 PM2.5 NOx CO2 CO VOC HC Base year Method Reference

East Asia/ / 1850 240 2800 126 000 108 100 2013 AIS Liu et al. [201]
China / 1194 181 167 2208 78 430 242 112 2014 AIS Chen et al. [202]
China / 1300 1910 86 300 74 69 2013 AIS Fu et al. [203]

YRD Regional 380 710 2010 AIS Fan et al. [204]
Shanghai 82 12.3 11.4 152 7.1 2010 AIS Fan et al. [204]
Shanghai 35.4 4.6 3.7 57 289 4.9 2.1 2010 Fuel-based, vessel-visa data Fu et al. [197]
Shanghai 51 7 58 3013 4.6 2003 Fuel-based, vessel-visa based Yang et al. [194]
Ningbo-Zhoushan 21.6 2.6 2.4 35 3 1.5 2010 AIS Yin et al. [219]
Yangshan 5.6 0.22 0.86 10.8 578 1.1 2009 AIS Song et al. [220]
Estuary of the Yangtze River 147 245 4054 57 9 2010 AIS Yao et al. [221]

GPRD Regional 104 150 2015 AIS Mao et al. [206]
PRD Regional 62 7.2 6.6 104 10.6 4.2 2013 AIS Li et al. [205]

Regional 63 2.3 92 10.5 0.9 2006 Fuel-based Zhang et al. [196]
Shenzhen 1.6 0.16 0.15 6.7 1.6 0.7 0.08 2003 Trade-based Li et al. [199]
Shenzhen 13.6 2.2 1.7 23.3 2.2 1.1 2010 AIS Yang et al. [222]
Hong Kong 12.4 1.4 14.5 1.4 0.6 2007 AIS Ng et al. [223]
Hong Kong 8.2 1 17.1 2007 AIS Yau et al. [224]
Guangdong Province 146 7.9 7.2 231 30 9.3 2010 Fuel-based. vessel-visa based Ye et al. [198]

BRA Regional 121 174 7209 14.4 6.1 2014 AIS Xing et al. [225]
Regional 231 21.5 19.7 306 13 344 23.8 9.9 2013 AIS Song et al. [226]
Tianjin 29.3 4 3.7 41.3 3.6 1.7 2014 AIS Chen et al. [227]
Tianjin 0.2 4.3 0.7 0.2 2006 Fuel-based Jin et al. [195]
Tianjin 61 5.4 4.9 73 3471 5.7 2.4 2013 AIS Xing et al. [225]
Qingdao 33.2 4.5 4.2 42.9 3.7 1.9 2014 AIS Chen et al. [228]
Qingdao 2004 Vessel-visa based Liu et al. [229]
Tangshan 80 7.6 7 112 4620 8.7 3.6 2013 AIS Xing et al. [225]
Qinhuangdao 64 6 5.5 86 3727 6.7 2.8 2013 AIS Xing et al. [225]
Huanghua 26.3 2.5 2.3 34.6 1526 2.7 1.1 2013 AIS Xing et al. [225]
Dalian 49.4 5.8 52 2885 4.7 2 2012 AIS Tan et al. [230]

Taiwan Kaohsiung 0.64 0.053 0.049 0.68 34.8 0.053 0.019 2012 AIS Cullinane et al. [231]
Keelung 0.19 0.016 0.014 0.2 10.19 0.016 0.006 2012 AIS Cullinane et al. [231]
Taichung 0.27 0.022 0.02 0.28 14.4 0.022 0.008 2012 AIS Cullinane et al. [231]

coastal vessels (CVs) and river vessels (RVs); more-
over, the emission characteristics were discussed
from various perspectives, such as vessel type, op-
erating mode, discharge equipment, monthly vari-
ations and the spatial distributions. Fu et al. [203]
compiled national- to port-level emission invento-
ries for China, hotspot regions and individual ports
and compared ship emissions with on-road mobile
source emissions.

Estimates of the shipping emissions from the
abovementioned sources for various regions are pre-
sented in Table 9. The total shipping emissions of
SO2, NOx and PM determined using bottom-up in-
ventory methods are 1300, 1910 and 164 Gg/yr in
the year 2013 [203] and 1193.7, 2208.4 and 347.2
Gg/yr in the year 2014 [202]. The largest body
of contributions regarding shipping emissions ad-

dresses ships in the YRD [204].This region includes
emissions from the ports of Ningbo-Zhoushan and
Shanghai, as well as 13 other ports. The largest
sources are container ships. Of the other types of
ships, the dominant emitters depend on the loca-
tion. Non-container cargo ships contribute 32–36%
of emissions in theYRD[204], whereas bulk carriers
contribute approximately 17.5% of emissions in the
Jing-Jin-Ji (JJJ) region [202] and 14–20% of emis-
sions in the PRD [205,206]. Variations in emission
amounts are difficult to explain, given the variability
in domain size, the raw data and methods used, and
the target year.

The biggest challenge in the future develop-
ment of emission inventories is the unreliability
of EF data. Current emission inventories in China
usually adopt ship EFs from mainstream reports,
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including those of the International Maritime
Organization [207,208], Entec [209], Energy and
Environmental Analysis Inc. [210], the EPA [211],
ICF International [212] and EDGAR. Despite the
consistency of the SO2 (9.6–10.6 g/kWh), PM and
NOx EFs are of large uncertainties (1.2–1.5 g/kWh
for PM and the emission regulation threshold is
used for NOx). Measurements of in-use ships in
China improved the local EF database in several
studies [213–216]. The measured EFs in China are
insufficient to build an emission inventory because
(i) the sample size is suboptimal (seven ships were
tested in Fu et al. [213] and Peng et al. [215], three
ships were tested in Zhang et al. [216] and one ship
was tested in Lou et al. [214]) and (ii) the engine
sizes on the measured vessels are much smaller
than the fleet average of OGVs; the researchers
tested ships with main engines ranging from 76
to 2648 kW [213–216]—much lower than the
fleet average of cargo vessels for 2001 (4975 kW)
determined from the Lloyd’s Maritime Information
System [217]. Difficulties encountered in the
systematic establishment of EFs include on-board
monitoring of international ships and measure-
ment authorization. Inconsistent results were
seen in determining the total emissions of PM
(0.72∼9.4 g/kg with fuel sulphur content of 0.05%
[216], 1.5–3.2 g/kg with 0.2% sulphur [215]), NOx
(35.7∼115 g/kg [216], 64.1∼83.9 g/kg [215])
and CO (6.93∼30.3 g/kg [216], 30.7∼51.7 g/kg
[215]); the total emissions ofHCwere 1.4–4.4 g/kg
with a fuel sulphur content of 0.2% [215].

AIS data display large uncertainties, especially in
Asia. AIS data include satellite-based and territory-
based signals. Low earth orbiting satellites record in-
formation on ships on the high seas; however, the
coverage is lower in Asia than in North America or
Europe [208]. The signal intervals are also longer
in Asia than elsewhere, occasionally exceeding mul-
tiple days. Territory-based stations are distributed
near shore and generally display satisfactory signals
for offshore areas; however, difficulties in data access
and coverage evaluations occur in Asia. Fortunately,
AIS data coverage inEurope has beenobserved to be
increasing [218], emphasizing the importance of up-
dating shipping emission inventories using the latest
AIS data.

The statistical database of ships is also a limiting
factor. In the series of studies by Liu, the number of
documented ships with detailed statistical informa-
tion increased from65903 to71058; however,miss-
ing information still caused considerable uncertain-
ties: (i) 8%of the ship records could not bematched,
given the absence of a Ship Identification Number;
(ii) inconsistent properties were noted for 30% of
the ships, such as the vessel type, rated engine speed,

rated engine power, length, width, height, design
maximum speed, dead weight tonnage (dwt), max-
imum draught and build year; a gradient-boosting
regression tree approach (GBRT) was adopted in
the studies by Liu [201] to solve this problem; (iii)
many smaller vessels and fishing vessels were not en-
tered in either Lloyd’s Register or the China Classi-
fication Society database. Thus, although uncertain-
ties are known to exist at the fleet aggregate level, the
magnitudes of these uncertainties are unknown.

A cross-study comparison of shipping emissions
with port function, the urban population and eco-
nomic development would be invaluable and would
reveal the impacts of various factors and their
relationships with the differentiation of regional
shipping emissions. In addition, shipping emission
inventories should be used broadly in impact evalu-
ations of air quality, health and climate. A thorough
evaluation is necessary to guide the development of
future policies and regulations.

Other off-road sources. The emissions from agricul-
tural equipment, construction machinery, locomo-
tives and off-road vehicles are mainly estimated
based on fuel consumption and the correspond-
ing EFs. The populations of agricultural equipment
and constructionmachinery, the quantities of freight
transported by locomotives and the sales of three-
wheelers and low-speed trucks can be obtained from
the Chinese statistical yearbooks. Several studies re-
port the activity rates for various sources: Fan et al.
[232] for different types of agricultural equipment,
Fu et al. [233] and Ge et al. [234] for harvesters
and agricultural tractors and Li et al. [235] for typ-
ical construction equipment. Fuel consumption is
then calculated based on the average fuel consump-
tion rate for each activity. Wang et al. [192] esti-
mated that, in 2012, agricultural equipment, indus-
trial equipment and locomotives consumed37.1, 5.2
and 3.7 Tg of diesel fuel, respectively.

These EFsmay vary with working conditions, the
engine technologies deployed and the emission stan-
dards that are in force; thus, in-field measurements
of EFs are needed in China. However, most of the
EFsused are extracted fromexistingEFmodels, such
as NONROAD, which was developed by the US
EPA. Local studies that characterize the emissions
from off-road engines are rare. Representative EFs
that are currently used for inventory development
can be found inWang et al. [192].

Off-road emissions in China are far from ac-
curately quantified and validated. Agricultural ma-
chinery (harvesters, agricultural tractors, etc.)makes
the largest contributions to NOx emissions, fol-
lowed by vessels (see the above subsection) and
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industrial equipment; specifically, agricultural ma-
chinery emits 1744 Gg of NOx and 147 Gg of PM
annually [192]. Very large gaps exist in estimates
of emissions from off-road sources in China. Real-
world characterizations of both activity rates and
EFs are urgently needed.

Solvent use
Solvent use contributes more than 20% of the to-
tal emissions of NMVOCs in China [10,28,100].
Emissions due to solvent use are estimated based
on the ‘EF’ method, which relies on the activity
rates and EFs for each source category. The major
sources include the industrial use of paint for ve-
hicles and architectural walls, industrial adhesives,
printing, degreasing, pesticide use, pharmaceutical
production and dry cleaning. Activity data for sol-
ventusemainly indicatepaint consumption, produc-
tion output, vehicle number and population, which
can be obtained from the statistical yearbooks or the
reports of the NBS and domestic industrial associa-
tions [2,10,100–102,169,236–237].

Current studies that employ EFs refer mainly to
Klimont et al. [10], Wei et al. [100] or Bo et al.
[101]. Klimont et al. [10] developed the first long-
term inventory of NMVOC emissions over China
using properly revised European EFs, due to the
lack of local information. Wei et al. [100] pro-
vided summary values of local EFs associated with
paint use in vehicle manufacturing, printing and
decorative paint use. For sources in which the sol-
vent content is limited by nationwide regulations or
standards in China, the limiting value is used (see
below). Other EFs are based on data from West-
ern countries obtained from the European Moni-
toring and Evaluation Program/European Environ-
ment Agency (EMEP/EEA) guidebook. Bo et al.
[101] estimated emissions using EFs derived from
the US AP-42 database. Wu et al. [102] updated the
EF database with locally measured EFs for solvent
use in pharmaceutical production, vehicle paint use,
the manufacturing of cans and enamelled wire, and
household appliances.These EFs, which include up-
to-date local EF data in China, are summarized in
Wu et al. [102].

To suppress the dramatic growth in emissions of
NMVOCs, the government of China has imposed
limits on solvent contents, thus providing a refer-
ence in the determination of EFs. Up to 2015, the
nationally regulated sources included wood paint by
GB 18581–2009, interior wall paint by GB 18582–
2008, water-based solvents for architecture and in-
dustrial paints by HJ 2537–2014, indoor adhesives
by GB 18583–2008, vehicle paint by GB 24409–
2009, wood production by HJ 571–2010, leather

products by HJ 507–2009, textile products by HJ
2546–2016, solvent-based wood furniture finishes
by HJ/T 414–2007, printing ink by HJ 2542–2016,
HJ/T 371–2007 and HJ 567–2010, and household
detergents by HJ 458–2009. More local surveys and
independent validations are needed to determine
the effects of applying this legislationnationwide and
to better quantify the emissions ofNMVOCs associ-
ated with solvent use.

Agriculture
Chinamay be the largest emitter of atmospheric am-
monia in the world. However, the annual emissions
reported by researchers vary from 9.8 to 17.2 Tg
[1,13,238,239], implying that these estimates con-
tain large uncertainties. Because of the very large de-
mand for agricultural products, the application of
synthetic nitrogen fertilizer and the management of
livestock manure dominate ammonia emissions in
China [240]. Accurate estimation of the emissions
nationwide is difficult because farming practices
(e.g. fertilizer application methods, animal housing
conditions and animal manure management) and
environmental conditions that determine ammonia
volatilization (e.g. surface temperature, soil acidity,
soil water content andwind speed) are regionally di-
verse.

A mathematical model that is applicable to all of
China, together with local EFs, is needed for real-
istic estimates. Huang et al. [238] attempted to de-
velop a simplemulti-parametermodel andHuo et al.
[241] derived ammonia EFs for urea, ammonium
sulphate and compound fertilizer based on a field
experiment performed on croplands planted with
winter wheat in northern China. Moreover, satel-
lite retrievals [242,243] andmodel inversions [244]
have also been used to constrain ammonia emis-
sions. Note that the Infrared Atmospheric Sound-
ing Interferometer aboard the European MetOp
satellite and the Atmospheric Infrared Sounder
aboard NASA’s Aqua satellite are capable of pro-
viding more detailed spatial patterns and temporal
trends than ground measurements. To better esti-
mate the ammonia emissions inChina,more in-field
measurements should be conducted to reflect real-
world conditions of fertilization and animal manure
management in China.

In-field crop residue burning
In-field crop residue burning (also referred as agri-
cultural fire) is the predominant type of open
biomass burning that is conducted in China, and it
occurs mainly during the harvest season. Emission
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estimates for this subsector obtained using various
methods have frequently been reported.These emis-
sions can be calculated as the product of crop yields,
the residue-to-production ratio, the dry matter-to-
crop residue ratio, the percentage of dry matter
burned in the fields and EFs [245]. This method
requires multiple parameters, and the results incor-
porate significant uncertainties. Although MODIS
(Moderate Resolution Imaging Spectroradiometer)
sensors aboard polar-orbiting satellites can capture
the spatial patterns of agricultural fires well, it has
been found that many fire events are likely not
identified in China because the resolution of these
data is still too coarse to pinpoint the small fires
that commonly occur on croplands in China [246].
Randerson et al. [247] proposed a method to esti-
mate the areas burned by small fires using the active
fire data.Wooster et al. [248,249] found a strong lin-
ear relationship between time-integrated fire radia-
tive power (FRP) and the amount of biomass com-
busted; thus, in recent years, FRPhasbeen suggested
as a new tool for estimating the emissions from veg-
etation fires [250,251]. This method is almost inde-
pendent of the characteristics of local biomes and
may produce realistic estimates. Liu et al. [252] used
an FRP-based method to estimate the emissions
from crop residue burning in northern China. In ad-
dition, geostationary satellites (e.g.Himawari-8) can
assist in better characterizing the FRP diurnal cycles
of agricultural fire events in China [253].

EVOLUTION OF EMISSIONS IN CHINA
Using the updated methods and input data for each
sector described in the previous sections, significant
improvements in total emission estimates have been
made during the last several decades. As is reason-
able, emission estimates differ among inventories,
due to differences in the compilation methods and
data used [254]. Recognizing these differences, we
focus here on reviewing thebest available knowledge
of the emission characteristics of pollutants, as well
as their sectoral distributions and historical trends
between 2000 and 2015 in China; we also examine
future projections of emissions to 2030.The sectoral
distributions of the emissions of each pollutant are
shown inTable 1, and the changes in emissions from
2000 to 2015derived fromvarious studies are shown
and compared in Fig. 4. The year 2010 is chosen for
use as a reference year in the following analyses.

SO2

SO2 can cause adverse effects on air quality, hu-
man health and ecosystems. SO2 emissions in

China are estimated to have been 18–28, 29–
35, 24–31 and 22–29 Tg in 2000, 2005, 2010
and 2014, respectively (derived from literature in
Fig. 4). From 2000 to 2006, SO2 emissions in
China increased by 53–65% at an annual growth
rate of 7.3–8.7% [13,36,255] (EDGAR v4.2 (avail-
able at http://edgar.jrc.ec.europa.eu/), MEIC v1.2
(available at www.meicmodel.org)). The growth of
emissions began to slow in approximately 2005;
emissions then decreased after 2006, due to the
nationwide use of FGD systems in power plants
[36,47]. The annual growth rate of SO2 emissions
for the period of 2006–10 was –4.6%, according to
the MEIC dataset; this value reflects the efficacy of
the control measures implemented during the 11th

Five-Year Plan (FYP). During the 12th FYP, the 8%
emission reduction target was achieved (a 14% re-
duction was realized, according toMEIC).The SO2
emission trends are in good agreement with satellite
and ground-based observations [36,44,256–259].

SO2 emissions are dominated by the power and
industrial sectors. In 2010, power plants and indus-
try contributed approximately 8 Tg (27%) and 16
Tg (58%) to the total emissions, respectively. The
fractional contribution of power plants decreased
from 49% in 2006 to 27% in 2010. The emissions
from power plants decreased by approximately 9 Tg
during the same period, due to the installation of
FGD systems, the construction of large units and
thedecommissioningof small units; these stepswere
taken to achieve the planned 10% reduction in emis-
sions during the 11th FYP period [19]. On the other
hand, control measures are still lacking in industrial
sources. The industrial combustion sector became
the largest contributor (more than 50%) to the total
emissions after 2008.

The sulphur content of fuel, fuel use, the degree
of sulphur retention in hard coal and the actual re-
moval efficiencyofFGDsystems are themain factors
that contribute to the uncertainties in SO2 emissions
[36]. Liu et al. [19] developed aunit-based coal-fired
power plant emission inventory basedon theCPED;
this inventory reduced the uncertainty range in SO2
emissions to –22 to 23%. Due to the large contri-
butions from industrial coal combustion, SO2 emis-
sions are quite sensitive to uncertainties in energy
statistics [26].

Energy-saving measures are increasingly impor-
tant for achieving further SO2 emission reductions
by 2030. Under the current emission control strat-
egy, SO2 emissions will increase by 26% or 37%
[7,8]. The enforcement of energy-saving measures
and progressive end-of-pipe control measures are
projected to lead to reductions in SO2 emissions of
36% and 26%, respectively, compared with a base-
line scenario. The reduction potential associated
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Figure 4. Evolution of emissions from 2000 to 2015 in China (Unit: Tg). References marked with ∗ are emission estimates including agricultural waste
field burning. ‘Xia et al. [255], PRI’ and ‘Xia et al. [255], STD’ are two cases of emission estimates regarding to the pollutant control devices and further
environmental standards, respectively (Xia et al. [255]).

with the installationof end-of-pipe control technolo-
gies will decrease, highlighting the importance of
energy-saving measures in achieving further reduc-
tions in SO2 emissions.

NOx

NOx (NO+NO2) plays a key role in the for-
mation of ozone and secondary aerosols. The
emissions of NOx in 2010 are generally consistently
estimated to have been 26–29Tg [7,8,69,255] (ME-
ICv1.2). Power plants, industry and transportation
are themajor contributors to the total emissions, and
these sectors have shares of 28–34%, 34% and 25%,
respectively [69,260] (MEICv1.2). The power and
transportation sectors contributed 9 and 7 Tg to the
total emissions in 2010, respectively (MEICv1.2).
The industrial sector has become the main contrib-
utor since 2010. The sector distributions remain
relatively stable, although the industrial sector

displays increases, whereas the power sector displays
decreases [3].

Driven by the rapid economic development and
the lack of relevant emission controls, NOx emis-
sions increased during both the 10th FYP and the
11th FYP [12,13,32,69] (EDGAR v4.2, MEICv1.2).
The rate of growth inNOx emissionswas 10.3% from
2000 to 2005 and 5.7% from 2005 to 2010 (MEIC
v1.2).The rapid increases inNOx over China during
this period are confirmed by satellite-based observa-
tions [258,261–266]. During the 12th FYP, the gov-
ernment of China set a target of reducingNOx emis-
sions in 2015 by 10% compared to 2010. To achieve
this goal, end-of-pipe pollutant abatement strategies
were carried out nationwide for the power, indus-
try and transportation sectors, and these strategies
tended to be effective in controlling NOx emissions
[7,69]. From 2011 to 2015, a decrease in emissions
of 21% is estimated tohaveoccurred, consistentwith
the changes in NO2 columns measured by satellites
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[267].Thepower sectorwas theprimary contributor
to these emission reductions; in this sector, a 56% re-
duction is estimated to have been realized in this pe-
riod.This reduction is associatedwith the increase in
the penetration of SCR systems from 18% to 86%.
The release of emission standards for vehicles also
had a significant effect in terms of limiting emissions,
especially in the urbanized regions, such as Beijing
and Shanghai [267].

It is predicted that dramatic reductions in emis-
sions of NOx can be achieved if end-of-pipe facili-
ties are installed and stringent vehicle standards are
applied in 2030. Zhao et al. [7] predict that the
NOx emissions will decrease by 20% from 2010 to
2030 in a best-guess scenario, and they will be fur-
ther reduced 24% if the issued and proposed emis-
sion standards are fully achieved. Six scenarios that
combine two energy scenarios and three sets of end-
of-pipe pollution control measures were designed
by Zhao et al. [69] to predict the trends in NOx
emissions from 2010 to 2030. By 2030, NOx emis-
sions are projected to increase by 36% in the baseline
case. In themost stringent control scenario, inwhich
SCR/SNCR systems installed and stringent vehicle
standards are applied, emissions would decrease by
61% compared to the 2010 level.This reduction was
updated by Wang et al. [8] to 72% using the same
prediction framework.

CO
CO is emitted by incomplete combustion and is a
precursor of ozone formation. Streets et al. [268]
and Zhang et al. [2] carried out two pioneering
investigations that improved the accuracy of esti-
mates of CO emissions in China. With the excep-
tion of EDGAR, emission estimates are generally
consistent among the inventories shown in Fig. 4.
EDGAR estimates much lower CO emissions be-
cause it underestimates fuel consumption by the
residential sector [254]. According to the MEIC
dataset, emissions of CO increased from 135 to 177
Tg (+31%) for the period of 2000 to 2005 and
then decreased from 182 to 170 Tg (–6%) from
2006 to 2010. The decrease in CO emissions dur-
ing 11th FYP is attributable to improvements in com-
bustion efficiency, the recycling of industrial coal
gases and strengthened vehicle emission standards
[3]. The annual growth rate associated with the
downward trends in CO emissions was estimated
to be –1.2% per year, which agrees well with mul-
tiple satellite datasets [269–271]. From 2011 to
2015, emissions of CO continue to decrease by 4%
and are reduced by as much as 162 Tg in 2015
(MEIC v1.2).

The sectoral distributions of CO emissions are
relatively stable from 2000 to 2015. The industrial
and residential sectors are themain contributors and
are estimated to have emitted 75 Tg (44%) and 71
Tg (42%) of CO in 2010, respectively (MEICv1.2).
Industrial emissions of CO increased by more than
50% from 2000 to 2008, due to the production of
steel, coke, cement, bricks and othermaterials. Since
2008, CO emissions from industrial sources have
decreased, mainly due to the recycling of coal gas
in plants and the substitution of shaft kilns in ce-
ment production.Residential emissions began tode-
crease after 2007 because of the reduced consump-
tion of coal and biofuels in households [13]. The
transportation sector contributed 12% of the total
emissions in 2010. Due to the implementation of
stringent vehicle emissions standards, the share of
transportation has decreased since 2006.

Further reductions in CO emissions could be
achieved through improving combustion technolo-
gies in the future. CO emissions from cement pro-
duction, which contribute approximately 8% of the
total, are estimated to decrease by between 32% and
63% in 2020 compared to 2010, due to the continu-
ing promotion of rotary kilns and the closure of shaft
kilns [15].

NMVOCs
NMVOCs are crucial precursors in the formation of
tropospheric ozone and secondary organic aerosols.
Given the important role of NMVOCs in air pollu-
tion control, NMVOC emissions have received in-
creasing attention in recent years.

Due to the rapid economic development and
the lack of strong control measures, the national
emissions of NMVOCs in China rose continuously
from 2000 to 2015. The annual growth rate asso-
ciated with this rapid increase in emissions from
2000 to 2005 is estimated to have been 7.0% and
8.9% [101,13] (MEIC v1.2). From 2005 to 2010,
the emissions of NMVOCs increased at a relatively
slow annual rate of 3.4–4.6% [8,169] (MEIC v1.2).
The results of Wu et al. [102] reflect emissions of
22.4 Tg in 2008 and 29.8 Tg in 2012 and an an-
nual growth rate of 7.4%—higher than the 5.3% es-
timated byMEIC v1.2.

The contributions of different sources to total
NMVOC emissions vary among different studies.
Industrial processes and transportation are two of
the primary contributors, and they account for 29.3–
39.9% and 25.6–26.9%, respectively, from 2008 to
2013, as estimated by Wu et al. [102,236]. In con-
trast, MEIC v1.2 indicates that NMVOC emissions
are produced primarily by industry (35% in 2010),
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residential biofuel combustion (22%) and solvent
utilization (32%) [3]. In MEIC, the contributions
from the residential sector and solvent use (22% and
32%, respectively) are much higher than in the re-
sults presented by Wu et al. [102] (10% and 15%),
whereas the proportion of transportation is much
lower in MEIC (10%). These discrepancies in the
sector-based NMVOC emissions can be attributed
to the differences in the source classification sys-
tem, activity rates and EFs used in the two inven-
tories. Combining the results of current studies, we
conclude that the industrial sector (especially the
petroleum-related industry and the coke industry)
makes the largest contribution to the total emissions
andwas also themajor driving source of the rapid in-
crease in emissions since 2008. The combustion of
biofuels in the residential sector, the use of solvents
(especially in paint, adhesives and pesticide use) and
transportation are other key contributors.

More reliable EFs are needed to reduce the un-
certainties associated with NMVOC emissions. In
recent years, increasing numbers of local EFs have
been measured; these factors address biofuel com-
bustion, cokeproduction, rubber products andother
emission sources.However,most of the relevant EFs
still rely on foreign databases, such as AP-42 or the
EEA handbook (see the ‘Petroleum industry’ and
‘Solvent use’ sections). More measurements and in-
vestigations of local EFs must be conducted.

The government of China has released standards
to control the emissions of NMVOCs that result
from the exploitation and distribution of fossil fuels
and several sources associated with solvent use. Un-
der current regulations, emissions of NMVOCs are
projected to increase by 27% over the 2010 level by
2030,with emission reductions in the transportation
and residential sectors. The enforcement of energy-
saving policies and the implementation of end-of-
pipe control measures would likely reduce the emis-
sions of NMVOCs by 16% and 26%, respectively, in
2030 compared to the baseline scenario [8].

NH3

NH3 can lead to the formation of secondary fine par-
ticulates andhas impacts on ecosystems.Huang et al.
[238]developed ahigh-resolution inventory ofNH3
emissions for 2006 using a process-basedmodel that
represents EFs on a grid; these EFs are parameter-
ized based on multiple factors, such as temperature
and soil properties. Following the same framework,
Kang et al. [240] compiled a long-term NH3 emis-
sion inventory from1980 to 2012.NH3 emissions in
China are estimated to have increased from 10.1 Tg
in 2000 to 10.7 Tg in 2005; they then decreased to

9.3 Tg in 2012. The good agreement of the bottom-
up emission estimates with the top-down inversion
results [244] confirms the reliability and accuracy of
these data.

In China, NH3 emissions are dominated by live-
stock manure and the application of synthetic fertil-
izer and account for 80–90% of the total emissions.
Livestock manure is the largest contributor, with
proportions of approximately 50%. From 2000 to
2005, the emissionsof livestockmanure increasedby
0.81 Tg (15%), leading to a rapid rise in total emis-
sions [240]. Due to the reduced numbers of beef
cattle and sheep, as well as promotion of the inten-
sive rearing system, livestock emissions decreased
by 18% from 2005 to 2012. The application of syn-
thetic fertilization is responsible for 30–43% of the
total emissions. From 2000 to 2012, the emissions
from this source decreased from 3.79 to 2.81 Tg,
which can be attributed to the substitution of urea
for highly volatile ammonium bicarbonate (ABC).

The estimated total NH3 emissions agree well
among the different inventories, but variations by
sector still exist, as shown in Kang et al. [240]. Addi-
tional local fieldmeasurements are needed to reduce
the uncertainties in EFs and thus those of emission
estimates.

PM
We present the changes in emissions of primary
PM10, PM2.5, BC andOC in this subsection. PM de-
grades air quality and visibility, affects the climate
system through increasing the radiative forcing and
damages human health. Lei et al. [34] quantified
the historical emissions of PM components using a
technology-based framework and is an example of a
pioneering native research study. The development
of primary PM emission inventories for China has
been a key topic of research that supports the assess-
ment of haze-control policies since 2013.

PM10 and PM2.5
The emissions of PM10 and PM2.5 are estimated to
have been 16 and 12 Tg in 2010, respectively, ac-
cording to MEIC v1.2. The trends in the emissions
of PM10 and PM2.5 are similar among the different
inventories. The emissions of PM10 and PM2.5 in-
creased by 15–17% and 15–20% from 2000 to 2005
[5,34] (MEIC v1.2) and decreased at rates of 10–
17% and 6–15% from 2005 to 2010, respectively
[6,8] (MEIC v1.2). Klimont et al. [5] arrived at an
increasing trend in emissions for the latter period,
likely due to different assumptions regarding tech-
nological evolution. Since 2012, the emissions of
bothPM10 andPM2.5 have showndecreasing trends.
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Cement production and the combustion of bio-
fuels in residential stoves are the largest emitters
of PM2.5, and these sources account for 11–33%
and 24–28% of the total emissions during 2000
and 2015, respectively (MEIC v1.2). Power plants
and transportation areminor contributors (less than
10%) to the total emissions. From 2000 to 2005, a
boom in the production of iron and steel, cement
and aluminium offset the effects of efficient PM con-
trol technologies, leading to the increase in emis-
sions [34]. During 2005 to 2010, the use of highly
effective PM abatement measures in the produc-
tion of cement led to a reduction in emissions in
this subsector of approximately 50%. The increase
in large power plants equipped with efficient end-
of-pipe dust collectors (e.g. electrostatic precipita-
tors or fabric filters) reduced the EFof PM2.5 by 46%
from 2005 to 2010 [6]. Nevertheless, the emissions
from iron and steel plants increased by 24–39% dur-
ing the same period, due to the huge growth of steel
production [6]. Local measurements of the PM EFs
for the brick and coke industries, as well as coal and
biofuel burning in the residential sector, are still lim-
ited.

In addition to end-of-pipe control measures,
energy-saving policies could play a key role in reduc-
ing the emissions of PM10 and PM2.5 by 2030. The
effects of advanced energy-saving policies on PM2.5
emissions (approximately 29% reduction, compared
to the baseline scenario) exceed those of the planned
end-of-pipe control measures (approximately 25%
reduction) [8].

BC and OC
Emissions of BC and OC are estimated based on
the mass ratio of each component in PM2.5 for each
source category. The measurements of the mass ra-
tios for various sources before 2010 are summarized
inLei et al. [34]. BCemissions increased from1.4Tg
in 2000 to 1.8 Tg in 2006, then showed a relatively
flat and then a decreasing trend since 2006 (MEIC
v1.2). Similarly, OC emissions increased from 2.7
Tg in 2000 to 3.5 Tg in 2005, remained at approx-
imately 3.2 Tg from 2006 to 2012, then decreased
to 2.5 Tg in 2015. The estimates of emissions re-
ported by the different inventories show relatively
good agreement, probably because they use similar
EFs for sources for which few local measurements
are available (e.g. brick and coke production).

BC and OC emissions are dominated by the res-
idential consumption of biofuels, which accounts
for 23–33% and 57–70% of the total, respectively.
The significant increase between 2000 and 2005 oc-
curred primarily due to the combustion of biofuels
(+0.13 Tg of BC, +0.51 Tg of OC), followed by

the coke industry (+0.09 Tg of BC, +0.11 Tg of
OC) and the transportation sector (+0.04TgofBC,
+0.02 Tg of OC) [34]. Since 2005, the sectoral dis-
tributions of both species have been relatively stable.

Toxic heavy metals. The development of emission
inventories that are more complete in terms of
the source categories and hazardous air pollu-
tants are becoming increasingly important for
protecting human health in the future. Quanti-
tative assessments of the emissions and spatial
distributions of toxic heavy metals, including Hg,
As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn; the
attribution of these emissions to particular sources;
and policy controls on the releases of these metals
from anthropogenic sources have been extensively
studied in a series of papers [272–276]. The histori-
cal results for the period of 2000–12 show increases
in the emissions of Hg, Cd, Sb, Cu and Zn that
exceed a factor of two; increases in the emissions
of As, Se, Cr, Ni, Mn and Co of 20–59% and a 29%
reduction in Pb emissions reached approximately
526.9–22 319.6 Mg (varying among species) in
2012 [276]. Brake wear, which is the main source
of hazardous metals from the transportation sector,
should be considered in future work; no emission
standard has been released that addresses this
source of hazardous metals.

MODEL-READY EMISSION INVENTORY
Spatial allocation
In addition to the estimation of total emissions, grid-
ded emissions are also needed for application in
chemical transport models. Allocating emissions ac-
cording to the geographic coordinates of emission
sources is the most accurate method of generating
gridded emissions. However, such information is
not usually available, especially for mobile and areal
emission sources, for which exact locations are un-
known. Therefore, certain parameters that may rep-
resent the spatial distributions of emissions are em-
ployed in the gridding process; these parameters are
referred to as spatial proxies.

After reviewing several global and regional emis-
sion inventories covering China, we find that the
spatial proxies used in current inventories are usu-
ally shared among the different pollutant species;
however, they differ among sectors. In the power
sector, early studies used latitudes and longitudes
to allocate the emissions from large-capacity power
units, whereas population density was used for small
power plants [1,2,12,22]. Recently, more detailed
power plant databases have been developed, such
as CARMA [37] and CPED [19], which contain
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more information on the locations of power emis-
sions than was provided by previous work.

For the industrial sector, total population
[1,12,13] or urban population [2] are most
commonly used as spatial proxies, based on the
assumption that such emissions are closely related
to human activities. However, Geng et al. [284]
have shown that this method may incorrectly
allocate greater amounts of emissions to rural
areas and underestimate urban emissions. Using
county-level industrial GDP data as a constraint
to map emissions from provinces to counties
before gridding [36] could enhance the accuracy of
estimated urban emissions and yield better model
performance at the county level [284]. Recent
studies have adopted large datasets indicating the
locations of manufacturing facilities that produce
products including coke, iron, steel and cement to
enable the generation of high-resolution (e.g. 0.05◦

× 0.05◦) and more accurate emission inventories
[15,285,286].

In the transportation sector, pollutants are emit-
ted from objects that follow trajectories; thus, road
networks are frequently used to distribute on-road
vehicle emissions [1,12] and ship lanes are used to
apportion shipping emissions [1]. The hidden as-
sumption in this method is that traffic volumes are
homogeneous within provinces. To reduce the bi-
ases producedby this assumption, some studies have
used county-level GDP [137] or county-level vehi-
cle populations [16] as a first-pass spatial proxy to
allocate emissions fromprovinces to counties before
using the road networks. Zheng et al. [16] also uti-
lized different types of road networks (e.g. highways
and national, provincial and county roads); the to-
tal VKT data were used to weight each road type to
further improve the allocation accuracy.

For the residential sector, total and rural popu-
lation density have been widely used for gridding
[2,36], though large uncertainties persist.

Review of the spatial proxies used in the Chi-
nese emission inventory shows that the selection of
spatial proxies is primarily empirical and work has
been carried out to assess the uncertainties in grid-
ded emissions introduced by the use of spatial prox-
ies [284,285]. Additional efforts are needed in the
future to improve the spatial distribution of emis-
sions.

Temporal variation
Temporally resolved emissions with an hourly res-
olution are typically required by regional chemi-
cal transport models (CTMs). The temporal varia-
tions in emissions are largely driven by the activity

strength or emission characteristics of their sources.
For the open burning of agricultural waste, fire data
derived fromMODIS are used to estimate emissions
at daily resolution [238]. The monthly emissions
due to other anthropogenic activities are estimated
by assigning the monthly profiles for each source
category; further allocation to daily and hourly
emissions is carried out based on the weekly and di-
urnal profiles, respectively. Emission processing sys-
tems that carry out temporal allocation have been
proposed and validated using the SparseMatrix Op-
eratorKernel Emissions (SMOKE)model forChina
[287,288].

Monthly profiles by source are developed based
on the monthly statistics of fuel consumption, in-
dustrial production or other relevant indicators
[3,13,19,287]. In summary, for power plants, emis-
sions are allocated tomonths basedonmonthly elec-
tricity generation. Industrialmonthly profiles are de-
rived from the yields of industrial products or indus-
trial GDP for eachmonth derived from statistical re-
ports. For residential sources, monthly profiles are
estimated from the stove operation time, according
to ambient temperatures [1–3,13]. Zhu et al. [112]
and Chen et al. [289] set up regression models to
characterize the temporal variations of energy use in
the residential sector based on temperature-related
variables and socio-economic parameters. For agri-
cultural activities, monthly emissions are estimated
using monthly parameters, such as soil pH values
and surface temperatures [238].

The available weekly and hourly profiles are re-
stricted to specific regions (e.g. PRD) and limited
source categories for which field investigations have
been performed (e.g. urban and highway on-road
vehicles) [290]. For the other sectors, the weekly
and diurnal profiles were developed using working
schedules, source characteristics, research reports
andpreliminary fieldmeasurements [287]. Informa-
tion on the weekly and diurnal variations in each
source is rarely available. Profiles are always shared
among source categories that have similar temporal
characteristics. Accurate databases of weekly and di-
urnal profiles covering complete source categories
within different regions in China are needed.

Source profiles and chemical speciation
Speciation of NMVOCs
NMVOCs consist of a variety of chemical species
that differ significantly in their chemical structures
and reactivity in producing ozone and secondary
organic aerosols (SOAs). In CTMs, NMVOCs
are usually characterized by a specific chemical
mechanism that represents theses differences. The
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Figure 5. Schematic methodology of NMVOCs speciation (adapted from Li et al. [28]).

most commonly usedmechanisms include the 1999
version of the State Air Pollution Research Center
(SAPRC-99) [291] and its updated versionSAPRC-
07 [292]; Carbon Bond Mechanism version IV
(CB-IV) [293], CarbonBondMechanism versionZ
(CBMZ) [294] and CB05 [295]; the Regional Acid
Deposition Model chemical mechanism (RADM2)
[296]; and the Regional Atmospheric Chemistry
Mechanism (RACM and RACM2) [297,298].
Individual species are lumped together based on
similarities in their carbon bond types (CB-IV,
CB05, CBMZ) or functional groups (SAPRC-
99, SAPRC-07, RADM2, RACM2). Therefore,
NMVOC emissions should be speciated into the
specific chemical mechanism configured in CTM.

Zhang et al. [2] developed a speciated NMVOC
emission inventory for a variety of chemical mech-
anisms (e.g. SAPRC-99, CB05, RADM2) using an
explicit speciation assignment approach. Following
the samemethod, a unified framework for NMVOC
speciation with an updated composite profile de-
velopment method has been proposed by Li et al.
[28] to generate model-ready emissions of multiple
chemical mechanisms for Asia, as shown in Fig. 5.
First, composite profileswere developed in thiswork
by averaging the profiles of the same source cate-

gory to reduce the potential uncertainty associated
with the selection of a single-source profile. The
emissions of individual species were then developed
using the composite profile for each source. Sec-
ond, the individual species were lumped to differ-
ent chemical mechanisms using the corresponding
species mapping tables. Li et al. [28] pointed out
that the OVOCs (oxygenated VOCs) were missing
fromsome locallymeasuredprofilesdue to improper
sampling and analysismethods, especially for biofuel
combustion and diesel engine operation. A frame-
work for correcting the fractions of OVOCs in com-
posite profiles was also developed by Li et al. [28].

Source profiles are the most important source
of uncertainties in the speciation of NMVOCs.
Mo et al. [299] compiled a source profile database
for hydrocarbons and OVOCs in China by sum-
marizing recent available profiles. In the last
several decades, increasing numbers of local pro-
files have been measured that cover important
sources, including residential fuel combustion
[114,126,179,299], solvent use [179,300,301], the
paint industry [302], the petrochemical industry
[179,303,304], the coking industry [305], on-road
vehicles [179,299,306–313] and fuel evaporation
[180]. Recent profiles have included OVOCs in
their measurements, thus making the results more
complete and reliable.

The emission characteristics of NMVOCs
produced by various sources have been pre-
sented by numerous studies [10,21,28,100,169,
236,299,237,314]. The emission distributions of
chemical species are relatively consistent among in-
vestigations. For China as a whole, alkanes, alkenes,
aromatics and OVOCs are the main contributors
to the total emissions, and these classes of com-
pounds have mass fractions of 24–30%, 19–28%,
15–30% and 12–18%, respectively. OVOCs made
up 54% of the total VOCs within heavy-duty diesel
vehicle exhaust and 12–46% of those produced by
residential biofuel and coal burning, demonstrating
the importance of OVOCs for combustion-related
sources. Ethene, xylene, toluene, propene, 2-
methyl-2-butene, 1,2,4-trimethylbenzene, butene
and OVOC species (formaldehyde and glyoxal) are
the main contributors to ozone formation that are
produced by anthropogenic sources [21,28].

Measurements of local industrial profiles are still
insufficient. Additional reliable domestic profiles for
industrial facilities (e.g. chemical plants, iron and
steel plants and oil refineries) and for both stack
and fugitive sources are needed. Apart from non-
methane hydrocarbons, OVOCs and halocarbons
should be sampled and analysed in profile measure-
ments. Source profiles are better reported in the ab-
solute mass (e.g. g/kg) instead of mass fraction (%)
because the latter may be highly uncertain, due to
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the incompleteness of the list of species measured.
The EFs primarily used in emission inventories are
for non-methane hydrocarbons, leading to underes-
timates in total VOC emissions by up to 30%, due
to the omission of OVOCs [299].The EFs based on
source profiles that include OVOC measurements
must be revised to improve the accuracy of emission
estimates.

Speciation of PM2.5
The composition of primary PM2.5, including BC,
OC, sulphate, nitrate and other trace elements, play
key roles in haze formation and climate change.
In CTMs, PM is speciated into over 10 chemical
species in the updated aerosol modules (such as
AERO6) used in regional models, providing a basis
for further simulations of the partitioning between
gases and aerosols, SOA formation, aerosol ageing
and other processes [315]. BC and OC are always
inventoried, together with PM2.5, whereas PM spe-
ciation is required to estimate the emissions of other
species for application in CTMs.

The framework used in PM speciation mainly
follows that used with NMVOCs. According to the
source profiles for PM2.5 for each source category,
PM2.5 is first speciated into various components
and then mapped to the model-compatible species.
Reff et al. [316] developed the first speciated PM2.5
emission inventory with 37 trace elements based
on the US National Emissions Inventory and
the US SPECIATE profile database (available at
https://www.epa.gov/air-emissions-modeling/
speciate-version-45-through-40). Compared to the
speciation of NMVOCs, research on the speciation
of PM in China is still lagging. Fu et al. [23] spe-
ciated PM2.5 into 18 species using available local
source profiles from the YRD region. The covered
species include EC, OC, sulphate, nitrate, H2O, Na,
Cl, NH4

+, non-carbon organicmatter, Al, Ca, Fe, Si,
Ti, Mg, K, Mn and others. Nationwide model-ready
emissions with PM speciation are still lacking.

Reliable source profiles of PM2.5 are essential
to the speciation process. Several local source pro-
files have been measured in China [23]; these pro-
files cover power plants [317,318], coal-fired boilers
[319], industrial combustion [95,320], residential
coal combustion [116,117], biomass burning [321],
vehicles [322,323], cement production [324], iron
and steel production [325] and coking [326]. The
USA-based SPECIATE database can supplement
the sources that are lacking in the local profiles.
Given the differences in the composition of PM be-
tween China and Western countries that may oc-
cur due to differences in fuel quality, technology and
control policies, more measurements and investiga-
tions of local source profiles of various sources for
PM are needed.

SUMMARY OF UNCERTAINTIES AND
LIMITATIONS
Theuncertainty ranges of emission estimates are cal-
culated through the propagation of error [1,13] or
the Monte Carlo approach [6,103,327]. Table 10
presents the emission uncertainties estimated by dif-
ferent studies in China. The uncertainties in emis-
sions by sector were also estimated by Zhao et al. [6]
using the Monte Carlo framework. The estimated
emissions of SO2 andNOx are found to have lowun-
certainties of –15–26% and –15–35%, respectively
([6], 95% CIs). A moderate uncertainty range is as-
signed to CO (–18–42%). The uncertainties in the
emissions of primary aerosols (PM10, PM2.5, BC,
OC) are much higher than those of the gaseous
species, due to the highly uncertain contributions
from the residential sector. The EFs are the main
contributing parameters to the final emission uncer-
tainties [6].As indicated in theprevious sections, the
current limitations of emission estimation by sectors
are summarized as follows.

Power plants: Local measurements of PM EFs
are still limited, compared to SO2 and NOx, leading
to relatively high uncertainties.

Industry: Very few local measurements of EFs
for industrial boilers can be found. The consump-
tion of fuel by industrial boilers is still highly
uncertain. There are very large gaps in the lo-
cal EFs for NMVOCs for most industrial pro-
cesses, especially those associated with oil refiner-
ies, carbon black production and the chemical
industry.

Residential: EFs show large variations among dif-
ferent measurements. The official statistics that de-
scribe the amounts of coal and biofuel consumed in
residential stoves arehighlyuncertain.Both fuel con-
sumption and the relevant EFs are assigned high un-
certainties, due to the lack of reliable underlying lo-
cal data.

Transportation: Current EFs of on-road vehicles
are calculated based on models developed for West-
ern countries, such as the USA-developed IVE and
MOVES models. Most existing EF measurements
were taken in the megacities, reducing their rep-
resentativeness for producing national emission es-
timates. Provincial-scale and national-scale surveys
for determining vehicle activities are still limited.
Fewmeasurements or surveys have been conducted
for off-road engines, leading to high uncertainties in
this subsector.

Solvent use: Investigations into the amounts of
solvent used are limited. Real-world measurements
of EFs are lacking for most emission sources associ-
ated with solvent use.

Agriculture: Localmeasurements of EFs forNH3
are rare.
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Table 10. Uncertainties of emission estimates (95% confidence intervals, unit: %).

SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC Year References

±12 ±31 ±70 ±68 ±132 ±130 ±208 ±258 2006 Zhang et al. [2]
±91 ±107 ±187 ±229 2005 Lei et al. [34]

−14–13 −13–37 −14–45 −17–54 −25–136 −40–121 2005 Zhao et al. [103]
−16–17 −41–80 −44–92 2010 Lu et al. [36]
±31 ±37 ±86 ±78 ±153 ±114 ±133 ±176 ±271 2008 Kurokawa et al. [13]
−15–26 −15–35 −18–42 −15–54 −15–63 −28–126 −42–114 2010 Zhao et al. [6]

In-field crop residue burning: The amounts of
crop residues burned in fields and the corresponding
EFs are still uncertain.

With regards tomodel-ready processing, the spa-
tial and temporal allocations of emissions and the
speciation of NMVOC/PM to model-configured
mechanisms are investigated and summarized in the
previous sections. Limitations include the lack of lo-
cal measurements of temporal profiles (especially
weekly and diurnal profiles), reliable spatial surro-
gates, and complete and reliable source profiles.

OUTLOOK
Based on the efforts made in previous studies,
we have gained increased knowledge of the emis-
sion characteristics of large point sources, includ-
ing power plants and cement plants, and other key
sources including on-road vehicles, shipping, resi-
dential combustion and agriculture. More reliable
statistics and survey-based data have been used to
reduce the uncertainties in activity rates and tech-
nology distributions. Local EFs and source profiles
covering various sourceshavebeenmeasuredand re-
ported. Independent validations including satellite-
based and in-situ observations have been introduced
for better constraints of emissions during the last
decade.

Further efforts are required to improve the accu-
racy of emission inventories in China based on local
data with high resolutions. Recent studies demon-
strate that treating sources as point sources sig-
nificantly improves the accuracy of both emission
estimates and the inferred spatial distributions of
emissions and thus model performance [285,328].
The development of inventory models that include
greater numbers of point sources, such as cement
plants, iron and steel plants and oil refineries, is an-
ticipated tomake key contributions. Given the grad-
ual installation of continuous emission monitoring
system (CEMS) in power plants in China, the accu-
racy of emission estimates can be further improved
by including the real-time data. Integrating data de-
scribing traffic flow into the development of vehic-
ular emission inventories should improve the accu-
racy of emission estimates significantly.

For sources that lack adequately detailed infor-
mation, a mosaic of different statistical data may
provide improved emission estimates [285]. Future
work should focus on surveys of activity rates and
measurements of EFs and source profiles in places
where few such assessments have been carried out
locally in China. Top-down validations based on
ground and satellite observations continue to play
important roles in improving the temporal and spa-
tial characterizations contained within emission in-
ventories in China.

Public access to emission inventories is another
important issue to be addressed. As essential in-
puts to CTMs, public access to emission invento-
ries and high transparency of such inventories can
benefit both modellers and the inventory commu-
nity. With wide application and independent valida-
tion, the uncertainties of emission inventories can
be identified and further reduced. We encourage in-
ventory developers to provide online access to emis-
sions data grouped by sector and subsector, together
with information on temporal variations, spatial dis-
tributions and chemical speciation (where possible)
and the necessary documentation.
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